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Summary

The function of stabilizer bars in motor vehicles is to reduce the body roll during cornering. The body 
roll is influenced by the occurring wheel load shift and the change of camber angle. Decisive is the 
steering performance which may be purposefully adjusted towards understeer or oversteer when 
designing the stabilization. The article contains the further outline of the calculation methods for 
stabilizer bars. Modern technological and structural solutions in contemporary cars are reflected 
also in the construction and manufacture of stabilizer bars. A proper construction and the selection 
of parameters influence the strength properties, the weight, durability and reliability as well as the 
selection of an appropriate production method. An improper preparation of Finite Element Method 
calculation models consequently leads to wrong results. It is particularly difficult to interpret the 
results and to find an error if we do not have a comparative calculation base (such as results of 
fatigue tests, analytical strength calculations). The article contains practical directions and general 
instructions for calculation necessary for a correct preparation of calculation models, for a proper 
performance of calculations and a proper interpretation of results using Finite Element Method.
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Fig. 1. Schematic structure of calculation by using the FEM [7]

1. Introduction

FEM is a method of approximation (by discretisation) of partial differential equations. 
Three basic elements of methodology for the solution of a given problem by means of 
FEM include [2, 7, 9]:

•	 a	weak	(variational,	integral)	formulation	of	a	differential	problem,

•	 a	decomposition	of	the	calculation	domain	into	elements,

•	 taking	simple	basic	functions	in	the	domain	as	a	basis	of	approximation.

While in the classical direct method of variational calculus, such as the Ritz method 
or the Galerkin method, the trial functions cover the entire domain (e.g. a structure), 
in case of the FEM such trial functions are selected which are not equal to zero 
respectively only in a subdomain, a so–called finite element. Fig. 1 clearly shows the 
individual steps when using the FEM [7, 9, 13].

After modelling, at first the geometry of the examined structure is decomposed 
into individual subdomains (finite elements). The cantilever beam shown in Fig. 1 is 
examined here for example as a plane elastic problem (modelling discussion). The 
middle plane of the cantilever beam is decomposed into finite elements. This leads 
to the so–called FE network. Various types of finite elements are available for the 
integration of the problem. In the present case, triangular and quadrangular elements 
were used for this purpose. The stiffness properties of the overall structure are 
described by the sum of the stiffness matrices of the individual finite elements. They 
are superimposed in addition to the overall stiffness matrix. Then, in conjunction with 
the geometric boundary conditions and the loads, a system of linear equations arises 
from the overall stiffness matrix. The unknown items to be calculated in this system of 
equations are the deformations of the so–called nodal points. Subsequently, stresses 
in each individual finite element can be calculated from the deformations using the 
trial functions [7, 9, 13].
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Fig. 2. Segments computational structure of the FEM

The problem solution by means of FEM allows obtaining an approximate solution. The error 
of a FEM solution can be pre–estimated based on the form of the problem to be solved, 
the geometric characteristics of the elements and the properties of the approximation 
space. Unfortunately, the estimation is expressed by means of an unknown exact solution 
(nevertheless it is significant to determine the convergence of the method, its optimality, 
and to compare it with other approximations of the same problem) [2, 10, 11].

Computer programs in which the finite element method is used consist of 3 parts (Fig. 2) 
[2, 7, 9]:

1. a preprocessor in which the problem to be solved is created,

2. a processor, i.e. the calculating part,

3. a postprocessor for the graphical presentation of obtained results.

For the users of such programs, the most labour– and time–consuming stage of the 
problem solution is the decomposition into finite elements in the preprocessor. An improper 
decomposition into finite elements causes that wrong results are obtained.

A finite element is a simple (plane or three-dimensional) geometric figure for which 
discriminated points called nodes and certain interpolation (nodal, shape) functions used 
for the description of the distribution of the analysed item inside it and on its sides were 
determined. The nodes are situated at the vertices of a finite element, but they can also 
be located on its sides and inside it. If the nodes are situated at the vertices only, the finite 
element is called a linear element (because the interpolation functions are linear then). 
Otherwise they are higher order elements [2, 7].

The order of an element is always equal to the order of interpolation functions (shape 
functions). The number of shape functions in an individual finite element is equal to the 
number of its nodes. The shape functions are always structured in such a way that at the 
nodes to which they refer their values amount to one and at the other nodes they have the 
value of zero.
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2. FEA calculations

2.1 Areas of the application of the FEM method

Advantages of using FEM:

•	 reduction	of	time	of	the	design	process,

•	 reduction	of	cost	of	the	design	process,

•	 reduction	of	the	production	costs,

•	 material	savings,

•	 possibility	of	an	early	identification	of	weak	points	of	the	design,

•	 improvement	in	quality	of	the	design	process,	thus	of	the	manufactured	element,

•	 optimisation	of	design,

•	 reduction	of	the	number	of	experimental	tests,

•	 	flexible	 adaptation	of	 the	design	 for	 further	 implementations	 (so–called	 supervision	 
of model variants).

Requirements and assumptions necessary to achieve the above – mentioned benefits  
[6, 9, 12]: 

•	 	Powerful	software	(ABAQUS, ADINA, ALGOR, ANSYS, ANTRAS, COSAR, COSMOS, ISAFEM, 
LUSAS, MARC, MECHANICA, NASTRAN, NISA, OPTISTRUCT, PERMAS, RADIOSS, ...),

•	 Powerful	Hardware	(PC,	workstation,	large	–	capacity	computer),

•	 FEM	–	theory	(knowledge	of	the	basics),

•	 Engineering	knowledge	to	critically	assess	the	results,

•	 Modeling	understanding	(real	construction	  calculation model).

Table 1. Examples of FEM applications [12]

linear elastostatics •  Boolean reversible material behavior

nonlinear elastostatics
• nonlinear material behavior (elastoplasticity)
•  geometric nonlinear problems (instability problems, 

large displacements at low strains)

linear Elastodynamics

•  natural oscillations
•  free oscillations
•  forced oscillations
•  randomly excited vibration

nonlinear Elastodynamics
•		reply	/	time	–	behavior
•		stability	and	resonances

static and dynamic aeroelasticity •		structural	behavior	under	inflow

linear and nonlinear thermoelasticity •		mechanical	stress	under	high	temperatures

heat transfer problems •		steady	and	unsteady	heat	conduction

liquid flows
•		seepage	flow,	velocity	pressure	and	temperature	

fields viscous flows

electrical engineering •		electromagnetic	fields

acoustics •		sound	pressure	distribution
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Principal procedure for the calculation of a component (e.g. a stabilizer bar) using the FEM 
[6, 9, 12]:

•	 	replacement	of	the	real	design	by	a	calculation	model	(preprocessor,	e.g.	HyperMesh),

•	 	calculation	of	the	deformations,	stresses,	internal	forces,	bearing	reactions	etc.	under	
predefined loads and bearing conditions (FE analysis program, main processor, e.g. 
OptiStruct),

•	 	evaluation	of	the	results	(postprocessor,	e.g.	HyperMesh),

•	 	targeted	optimisation	of	the	design	based	on	the	calculated	deformations,	stresses,	
etc.,

•	 	possibly	a	 recalculation	with	a	modified	design	or	a	modified	model	or	manufacture	 
of the component.

2.2 3D CAD – models

The component or the subassembly to be examined is usually in the form of a 3D CAD 
model, thus it accurately describes the geometric relationships.

Fig. 3. Sample models of stabilizers made with using of SolidWorks

However, most stabilizer bar models developed using such CAD programs such as: 
SolidWorks, CATIA are not suitable for automatic mesh generation. Such models require  
a further processing, e.g. using the HyperMesh program. The advantages thereof, in addition 
to considerably shorter computation times, include a smaller model size and a better handling 
as well as a reduced data base. Based on this data, such simplifications as the removal or 
blanketing of insignificant details such as holes or chamfers are made where necessary. 
Such steps are referred to as idealisation. Many components show symmetry and make it 
possible to reduce the calculation model. Due to the use of symmetry and antisymmetry 
boundary conditions the same statements as for a full model arise as a result. 

2.3 Preprocessing – Creation of the mesh, the loads and boundary conditions

In the next step, starting from the geometry, the FE network is generated (Figs. 4, 5d). It 
consists of finite elements and nodes. Various types of elements for integration such as 
beams, shells, solids, springs, gaps, rigid bodies etc. are at the user’s disposal [3, 9, 16].
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Fig. 4. Examples of mesh generation and optimization with the use of HyperMesh [10]

Fig. 5. Scope of the bearings and mesh for FEM friction free bearings a) [8], elastic mounting b) [8], external 
displacement c) [8], mesh varieties: HyperMesh, Abaqus, Ansys d)

This step is referred to as dicretisation and depending on the complexity of a structure  
it can take from a few seconds to several hours.

The aim is to generate a FE network where the elements have as little deviations from the 
ideal form as possible and at the relevant points have a sufficiently small edge length. In 
addition, the selection of the correct type of element is of major importance.
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Fig. 6. Forces acting on a loaded stabilizer bar and Flexible mouting (FEM replacement model) [1, 8, 11]

Apart from the FE network, loads and boundary conditions are also required for most 
calculations. Such factors as forces, moments, displacements, pressures, temperatures, 
speeds, accelerations, etc. are used as well. The boundary conditions describe the bearing 
of the model and possible symmetries. In case of (both solid and tubular) automotive 
stabilizer bars the best calculation results are achieved by defining the following boundary 
conditions (Fig. 6):

•	 	the	selection	of	mounting	(Fig.	6e)	and	of	the	method	of	stabilizer	bar	bearing	in	the	
vehicle (Figs. 5a and b, 6a, b, c and d),

•	 	the	definition	of	forces	or	displacements	of	the	ends	of	a	loaded	stabilizer	bar	(Figs.	5c,	
6a).

This data has been made available by the manufacturers of cars and flexible bearings 
used in motor vehicles.

2.4 FEA calculation

After finishing the FE model including the loads and boundary conditions, the actual 
calculation can be carried out. For this purpose the model is transferred to the solver that 
carries out various plausibility checks in the first instance and then checks the elements 
for the compliance with the predefined criteria. If e.g. material properties are missing or 
elements are too much distorted, then the calculation is terminated yet before the actual 
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analysis. If this step has been successful, then the conversion of the physical model into 
a mathematical model takes place. For this purpose, at first the stiffness matrix which 
represents the properties of the elements is generated. Since the matrices are positively 
defined and symmetrical the computing time can be considerably reduced. For this 
purpose, the matrix is reduced by a decomposition based on the Gaussian elimination 
to the extent that a triangular coefficient matrix is formed. This step is indeed highly 
computationally intensive; however, a significant time advantage arises as an end result. 
Together with the loads a system of equations arises which is to be solved by the solver 
and gives the searched items (displacements, stresses, etc. – Fig. 7) as a result.

Fig. 7. Example size of stress (zone of calculation) in the loaded stabilizer bar
Area 1 and 5 – small strength

Area 2 and 4 – average strength
Area 3 – area of high strength

Fig. 8. Prismatic bar compressed and stretched  [4]

An example illustrating the theoretical assumptions of the FEM in the computational 
practice of stabilizer bars can be a prismatic tension/compression member (Fig. 8).
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It is common knowledge that inside a prismatic tension/compression member (i.e. such 
with a constant cross-section) a constant elongation independent of the local position 
coordinate x prevails:

u(x)=α1+α2 x  where α1  and α2 are constants  (1)

Thus the longitudinal displacement u changes as a linear function of x [3, 4, 5].

u(x)= 1–  ui+ uj  respectively u(x)= 1–         =

=[Ni   Nj]    =
 (2)

where:  matrix of interpolation functions or „shape functions“

(3)

which means nothing else than:

 (4)

where: D – elasticity matrix, in this case consisting of a single item, namely the E module

Based on these elongation and stress expressions, the form change energy of the bar can 
be established:

 (5)

According to the Castigliano’s theorem applies:

 (6)

We can identify here the structure  with the stiffness matrix of the bar element:

 (7)

Which on closer examination proves to be the volume integral K=∫V B
T * D * B dv. If the 

geometry and the material properties of the bar are known, then – based on the specific 
trial functions – the respective stiffness matrix can be determined by a pre-definable 
integral.

K=  BT * D * B dv (8)

Such integrals are numerically implemented in the FE programs. Depending on the type of 
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element, a different number of Gaussian integration points which are selected internally in 
the program, i.e. without the influence on the part of the user, close to the element nodes 
is brought for this purpose.

The target values derived, such as stresses and elongations, are evaluated at the same 
points and extrapolated to the respective nodes.

2.5 Postprocessing – Analysis of the calculation results

The last step of an FEM analysis is the evaluation of the calculation results. For this 
purpose the calculated displacements, forces, stresses, etc. are fed into the pre– 
postprocessor and can be visualised there [3, 9, 16].

An analysis of the calculation results is a difficult and responsible task. Such analysis 
should include:

Fig. 9. Stress substitute in loaded stabilizer bar
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Fig. 10. The results using a variety of calculation programs FEM (Abaqus a), Ansys b), HyperWorks – Radioss c))

1.  an evaluation of the calculation model – a definition of areas characterised by the 
highest, maximum stresses (Figs. 9c, 10a, b and c),

2. a determination of maximum stress values (Fig. 9b and c),

3.  a comparison of the curve obtained from analytical calculations, characterising the 
distribution of stresses in a loaded stabilizer bar with a curve obtained from the 
FEM calculations (Fig. 9a and c),

4.  in case of the occurrence of great differences between the results of analytical 
and FEM calculations the FEM calculation model, and in particular the boundary 
conditions, should be checked.

In case of a correctly conducted FEM analysis the deviations of results should not be 
greater than ±5%. Correctly prepared models, a correctly conducted FEM calculation 
analysis lead to comparable results independent of the solver applied (Fig. 10a,  
b and c).
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Further calculations – fatigue strength (HBM nCode8) (Fig. 11 and 12)

Fig. 11. Strength calculations of loaded stabilizer bar with using of HBM nCode8 progra

3. Conclusions

Each FEM calculation and simulation (according to the matrix – Fig. 1, 2) has to complete 
the validation and verification process. 

Verification & validation plan (V&V plan, Fig. 13):

a) General,

b) Comment on experiments,

c) Uncertainties,

d) Verifications,

e) Reference values for validation,

f) Validation:   

Simulation with experiment:

•	 Validation	of	the	calculation	with	a	laboratory	test,

•	 Answer:	compliance	of	calculation	and	experiment	acceptable.

Simulation with reality:

•	 Validation	of	the	model	with	reality,



49
Automotive stabilizer bars – strength calculations of stabilizer bars using finite element method  

– directions and general instructions for calculation

Fig. 12. Fatigue stress calculation of loaded stabilizer with using of HBM nCode8 program

Fig. 13. Detailed model development, verification, & validation process (V&V Plan Thacker et.al., Los Alamos) [15]
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•	 Please	note:	not	the	same	as	validation	of	the	calculation	with	a	test,

•	 Possibly	from	the	summary	of	sub-experiments,

•	 Answer:	compliance	of	calculation	with	reality	acceptable.

Summary – verification of results

Objective of the verification of results:

•	 Verification	of	the	FEM	results:	Validity	of	the	FEM	solution,

•	 Validation	model:	compliance	of	experiments	/	calculations	with	reality,

•	 Validation	of	calculation:	compliance	of	experiments	with	calculation,

•	 Objective:	sufficiently	accurate	description	of	reality	or	experiment!

The computational models of stabilizer bars Land Rover L405 and VW MQB created by the 
authors were used to present an optimal scheme of the calculation of stabilizers car using 
FEA. These models in industrial conditions are subject to continuous of verification and 
validation.
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